
Architecture Support for Defending Against Buffer Overflow Attacks

Jun Xu, Zbigniew Kalbarczyk, Sanjay Patel and Ravishankar K. Iyer
Center for Reliable and High-Performance Computing

Coordinated Science Laboratory
University of Illinois at Urbana-Champaign
�junxu,kalbar,sjp,iyer�@crhc.uiuc.edu

Abstract

Buffer overflow attacks are the predominant threat to
the secure operation of network and in particular, Internet-
based applications. Stack smashing is a common mode of
buffer overflow attack for hijacking system control. This
paper evaluates two architecture-based techniques to de-
fend systems against such attacks: (1) the split control and
data stack, and (2) secure return address stack (SRAS). The
split stack approach separates control and data stack to
prevent the function return address from being overwritten.
This approach can be implemented with compiler support
or with architectural support by modifying the semantics of
call and return instructions. The compiler implementation
shows slight performance overhead (e.g., 2% for ftp server),
and the architectural support eliminates the overhead of the
software solution. The SRAS is a hardware-based solution
for detecting attacks. It uses the redundant copy of the re-
turn address maintained by the processor to validate return
addresses and thereby detect malicious attacks. SRAS has
been implemented in the SimpleScalar processor simula-
tor. Simulation results show that the maximum overhead
is 0.02% with a SRAS size of 64 entries for SPECINT 2000
benchmarks.

1. Introduction

The explosive growth of the Internet has brought an in-
crease in Internet systems being compromised by malicious
attacks. The extent of attacks ranges from exhaustion of
system resources to seizing of root privileges and ultimately
unrecoverable damage. Among all attacks, a substantial and
growing portion of attacks exploit buffer overflow vulnera-
bilities. In 1988, the Morris Internet worm [10] exploited
a buffer overflow vulnerability in fingerd on Unix sys-
tems. In recent years, buffer overflow exploitation are be-
coming increasingly popular among attackers. In the Sum-
mer of 2001, Code Red Worm [7] spread over the Internet

exploited a buffer overflow vulnerability in the Microsoft
IIS (Internet Information Server) indexing service DLL. It
allowed arbitrary code to be executed on the compromised
host. More recently, in December of 2001, several security
related bugs were discovered in Microsoft Windows XP’s
UPnP (Universal Plug and Play) service [9], one of which
is a stack buffer overflow vulnerability that allowed an at-
tacker to gain remote administrator access to any default
installation of Windows XP.

Figure 1 shows the number of security alerts reported by
CERT/CC [6]1 between 1988 and March, 2002 (statistics
prior to 1999 from [18]). Attacks that exploit buffer over-
flow vulnerabilities have accounted for approximately half
of all the alerts after 1997. Among the six alerts during the
first two months of 2002, five of them exploit buffer over-
flows.

Figure 1. CERT Security Alerts by Years

Buffer overflow attack exploits vulnerabilities in pro-
grams (most often unchecked buffer on the process run-time
stack) to overwrite control information (i.e., function return
address). By overflowing a stack-allocated buffer, the at-
tacker can seize the control of the process and force it to
execute arbitrary, malicious code. Although, various soft-

1The CERT Coordination Center was established after the Morris In-
ternet worm incident in 1988 and funded by DARPA to coordinate com-
munication among experts during security emergencies and to help prevent
future incidents.

ware solutions have been proposed to tackle the problem,
buffer overflow attacks still dominate. This is mainly due
to the following reasons: (1) thousands of legacy applica-
tions are still being used and many of them are vulnerable
to buffer overflow attacks; (2) many proposed software so-
lution incur undesirable performance overheads and/or can-
not protect from all attacks. As a result, users are reluctant
to patch their software; (3) new software products, due to
their inherent complexity and lack of thorough testing due
to time-to-market pressure, can leave serious vulnerabilities
concealed. This paper proposes two architectural solutions
for run-time protection against buffer overflow attacks: (1)
split control and data stack and (2) secure return address
stack (SRAS).

Split Control and Data Stack: An important reason that
an overrun buffer can result in control being seized is that
current systems use a unified stack for both control infor-
mation (i.e., function return addresses) and data storage
(buffers). We propose to split the unified stack into a con-
trol stack for return addresses and data stack for locally-
allocated data items such as temporary buffers. This scheme
can be implemented either in software or in hardware. We
implemented the software approach by modifying the GNU
C Compiler, gcc [12]. Results show that the proposed
approach is effective in protecting real applications with
slight performance overhead (e.g., 2% for ftp server). By
changing the semantics of function call/return instructions,
hardware-based split stack implementation eliminates the
overhead of the software-based implementation.

Secure Return Address Stack (SRAS) is hardware-based
solution for detecting buffer overflow attacks. It uses the
redundant copy of the return address maintained by the pro-
cessor’s fetch mechanism to validate return addresses and
thereby detect malicious tampering. The operation of SRAS
is similar to the Return Address Stack (RAS) implemented
in most modern processors (e.g., Pentium and SPARC).
Three different variants of SRAS, speculative SRAS, non-
speculative SRAS, and non-speculative SRAS with over-
flow handling are evaluated using SimpleScalar simulator
[5]. Performance evaluation shows that with SRAS of 64
entries, the performance degradation of the non-speculative
SRAS with overflow handling is between 0% and 0.02%.

2. Buffer Overflow Exploit

Buffer overflow is the result of writing more data into a
buffer than the buffer can hold. This happens when a vul-
nerable program receives external input, and stores the input
to a buffer without checking the buffer’s boundary. In order
for a buffer overflow attack to succeed, it needs to achieve
the following two goals (1) Inject the attack code and (2)
force the process to execute the injected code. If either goal
fails, the attack fails. The most dominant form of buffer

overflow exploitation is stack smashing attack. We explain
how this kind of attack works using a synthetic example
adapted from [1].

Figure 2 shows the C source code of the simple syn-
thetic example. The attack program first prepares the in-
put in large string, and then copies the content of
it to the buffer on the stack. Note that buffer has
only 96 bytes of space while large string has 128
bytes. Function strcpy() blindly copies everything from
large string to buffer without boundary check-
ing, hence an overflow situation occurs. The content of
large string has been carefully crafted to both inject
the malicious code and change the return address on the
stack to the start of the malicious code. The stack layout
before and after strcpy() is shown in Figure 3. The
shaded area in Figure3(b) shows the content of the over-
run buffer after strcpy() which includes buffer and
the location of original return address. The first part of the
overrun buffer is filled using the code in shellcode and
the second part is filled using the address of buffer, i.e.,
the starting address of the malicious shellcode on the stack.
The function return address on the stack is overwritten by
the address of buffer (B in Figure 3). When main() re-
turns, it actually transfers control to address B and begins
to execute the malicious code. The malicious code executes
the execv system call to start a shell /bin/sh.

In a real security attack, the malicious code normally
comes from an environment variable, user input, or from
a network connection. A successful attack on a privileged
process such as a set uid program or a daemon process run-
ning as root would give the attacker an interactive root shell.
Such an attack is often based on reverse-engineering the tar-
get program. Using techniques from [1], an attack method
can be relatively easily engineered.

3. The Split Control and Data Stack Approach

A fundamental reason that the stack buffer overflow is
possible is that current systems use a unified stack for both
control flow (function return addresses) and local data (tem-
porary buffers, variables and function arguments) as shown
Figure 4(a). When a function receives external data, and
transfers that data to a stack-allocated buffer without check-
ing the buffer’s boundary, both the buffer and the return ad-
dress (adjacent to it on the stack) can be overwritten. We
propose to split the unified stack into: (1) a control stack
used to store function return addresses only, and (2) a data
stack to store temporary data and function arguments (Fig-
ure 4(b) and (c)). This section describes two ways of imple-
menting the proposed solution, a software implementation
by modifying an existing compiler and an architectural so-
lution that changes the semantics of function call and return
instructions. Since our implementation is in the context of

char shellcode [] =
”�xeb�x1f�x5e�x89�x76�x08�x31�xc0”
”�x88�x46�x07�x89�x46�x0c�xb0�x0b”
”�x89�xf3�x8d�x4e�x08�x8d�x56�x0c”
”�xcd�x80�x31�xdb�x89�xd8�x40�xcd”
”�x80�xe8�xdc�xff�xff�xff / bin / sh” ;

char la rge s t r ing [128];
void main() �

char buffer [96];
int i ;
long � long ptr ;

long ptr=(long �) la rge s t r ing ;
for (i = 0 ; i � 32; i++)
�(long ptr + i) = (int) buffer ;

for (i =0; i�s t r len (shellcode) ; i++)
large s t r ing [i] = shellcode [i] ;

strcpy (buffer , la rge s t r ing) ;
�

Figure 2. Example Source Code

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

������������������

parameters

return address

saved frame ptr

*long_ptr

i

buffer[96]

Address B

St
ac

k
gr

ow
s

do
w

nw
ar

d

B
uf

fe
r

gr
ow

s
up

w
ar

d

original return

address

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

������������������

B

B

*long_ptr

i

Address Bshellcode
shellcode
shellcode
shellcode
shellcode

/bin/sh

B
B

Bpr
ev

io
us

 s
ta

ck
 f

ra
m

e
st

ac
k

fr
am

e:
 m

ai
n(

)

pr
ev

io
us

 s
ta

ck
 f

ra
m

e
st

ac
k

fr
am

e:
 m

ai
n(

)

(a) Stack Before Buffer Overflow (b) Stack After Buffer Overflow

Figure 3. Stack Layout for the Example

Linux on Intel IA-32 architecture, we first briefly describe
the function calling convention on IA-32.

In the Intel IA-32 architecture [13], function call and
return are implemented using two instructions, call and
ret, respectively. When executing a call instruction, the
processor pushes the function return address (the address
of the instruction that immediately follows) onto the stack
location pointed to by the stack pointer register esp and
transfers control to the target function. When a ret in-
struction is executed, the processor pops off the current top
of the stack pointed to by esp to the program counter and
transfers control to that address. When executing ret, the
processor assumes that the top of the stack holds the correct
return address. The compiler uses the same stack pointer
register to grow and shrink the stack space allocated for
buffers, variables, and function arguments storage.

3.1 Compiler-based Split Stack Approach

The compiler-based split stack approach is illustrated in
Figure 4(b). At the entry to each function, the return address
saved on top of the data stack is also saved to on the top of
the control stack. Before the function returns, the top of the
control stack is restored to the top of the data stack. As a
result, the return instruction that immediately follows uses
the saved return address from the control stack instead of the
one that has been on the data stack through the lifetime of
the function invocation. As Figure 4(b) shows, there are two
copies of the return address, one on the data stack that can
be tampered by buffer overflow, and another on the control
stack that is immune against such tampering. Since a return

instruction always uses the safe copy of the return address
on the control stack, an overflow attack cannot seize the
execution control of a process.

Our implementation of the compiler-based split stack re-
quires modifying the GNU C Compiler, gcc [12], on Linux
platform. The compiler allocates space for the control stack
and manages the control stack pointer variable csp. Saving
the return address on the control stack is implemented in the
prologue for each function. Function prologue is respon-
sible for setting up the stack frame, initializing the frame
pointer register (if used), saving registers, and allocating
additional temporary storage. It is generated at the very
beginning of each function. An added instruction copies
the function return address from the top of the data stack
pointed to by stack pointer register esp to the top of the
control stack pointed to by the variable csp and increments
csp by one word. Restoration of the return address from
the control stack to the data stack is done in the epilogue
of each function. Function epilogue code is responsible for
restoring the saved registers and stack pointer to their orig-
inal values and returning control to the caller. The extra
instructions restore the function return address at the top of
the control stack (pointed to by csp) to current top of data
stack (pointed to by stack pointer esp). The control stack
pointer is then decremented by one word. When the ret
instruction is executed, it uses the return address saved on
the control stack.

Effectiveness of the compiler-based split stack approach.
The effectiveness of this approach is evaluated using actual
buffer overflow exploits provided by the LibSafe [3] team

parameters

saved frame ptr

return address B

parameters

saved frame ptr

return address C

local variables

�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������

parameters

saved frame ptr

return address A

local variables

local variables

parameters

saved frame ptr

return address B

parameters

saved frame ptr

return address C

local variables

�������������
�������������
�������������

�������������
�������������
�������������

return address B

return address A

return address Cesp esp

local variables

saved frame ptr

parameters

saved frame ptr

local variables

parameters

�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������

parameters

esp

saved frame ptr

local variables

��������������
��������������
��������������

��������������
��������������
��������������

return address B

return address A

return address C

csp

��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������

St
ac

k
gr

ow
s

do
w

nw
ar

d
parameters

saved frame ptr

return address A

local variables

local variables

csp

Control Stack

Data Stack

Control Stack

Data Stack

pr
ev

. f
ra

m
es

fu
nc

_A
()

fu
nc

_B
()

fu
nc

_C
()

(a) Unified Stack

fu
nc

_C
()

fu
nc

_B
()

fu
nc

_A
()

pr
ev

. f
ra

m
es

(c) Architecture Supported Split Stack

pr
ev

. f
ra

m
es

fu
nc

_A
()

fu
nc

_B
()

fu
nc

_C
()

(b) Compiler-based Split Stack

Figure 4. The Split Stack Scheme

in their distribution package [2]. The distribution includes
5 synthetic exploits, which construct different malicious in-
put, and one real attack, the xlockmore attack, which locks
an X Window display. The xlockmore exploits a bug in the
X window display lock program that usually runs setuid as
root. Without any protection, these exploits result in a inter-
active shell being forked due to the malicious code. After
compiled using the modified version of the compiler, exe-
cution of these exploits resulted in the program terminating
abnormally, preventing the intruder from compromising the
system.

Benchmark Base Time Split Stack Overhead(%)

164.gzip 355.7 384.6 8.14%
175.vpr 594.1 615.5 3.61%
176.gcc 335.9 347.8 3.52%
181.mcf 708.2 708.3 0.01%
186.crafty 407.6 466.2 14.38%
197.parser 487.8 515.6 5.69%
254.gap 241.9 278.7 15.20%
255.vortex 505.4 625.5 23.77%
256.bzip2 496.3 532.6 7.32%
300.twolf 1125.6 1154.8 2.59%

ftpd (1KB) 0.117 0.123 5.43%
ftpd (1MB) 0.127 0.130 2.38%

Table 1. Runtime Overhead for Compiler-
based Split Control and Data Stack (All time
in seconds)

Performance of the compiler-based split stack approach.
The performance overhead of the compiler-based split
stack approach is evaluated by running the SPECINT 2000

benchmark programs 2 with the reference input set and the
FTP server, wu-ftp-2.6.0 [20]. The results are shown in Ta-
ble 1. The Base Time column provides execution time for
the applications compiled using the original gcc. The fig-
ures in the Split Stack column are obtained while running
the benchmark programs compiled using the modified com-
piler. The overhead of the integer benchmarks ranges be-
tween 0.01% and 23%. Performance of the FTP serever is
obtained by measuring the end to end delay as seen by a
FTP client. The client logs onto the server and transfers
1KB or 1MB file. The overhead for the FTP server with
1KB file transfer is about 5% and for 1MB file transfer is
2%. In the case of larger file transfer, more time is spent on
I/O which hides the overhead due to the split stack imple-
mentation.

The measured overhead is due to the extra memory ac-
cesses for saving and restoring of return addresses. Saving
of an address includes two memory reads and two memory
writes, i.e., read the address from data stack, write it to the
control stack, read and write of control stack pointer csp.
Similarly, restoring an address also requires four memory
accesses. For each function invocation, eight extra memory
accesses are required which might cause observable over-
head. For server applications that are the primary targets
for most attacks, the overhead shall be insignificant as in
the case of FTP server.

In the next section, we show that with appropriate sup-
port from the processor, the overhead introduced by the
compiler-based approach can be eliminated.

2The SPECINT 2000 benchmarks are a suite of integer applications
used mainly to measure the performance of processor and memory archi-
tectures.

3.2 Split stack with architectural support

The extra overhead introduced by the compiler-based ap-
proach can be eliminated by modifying the semantics of the
function call and return instructions on IA-32. We explore
changing the semantics of the call and ret instructions
to eliminate the extra memory accesses due to saving and
restoring of the return addresses. The new semantics of
the two instructions are as follows: (1) for the call in-
struction, the processor pushes the function return address
onto the control stack pointed to by the newly added control
stack pointer register csp (instead of esp) and transfers
control to the target function, and (2)for the ret instruc-
tion, the processor pops off the current top of the control
stack (pointed to by the control stack pointer csp) to the
program counter and tranfers control to that address. The
extra register, csp is needed to manage the control stack
and to eliminate extra memory accesses due to the read and
write operations for adjusting the memory variable csp.
The semantics of instructions that manipulate the stack such
as push and pop remain unchanged. In this new scheme,
the function call and return instruction only manipulate the
control stack and do not interfere with the operation of the
normal data stack. In case of buffer overflow, the attacker
can potentially overwrite the data stack, while return ad-
dresses stored in the control stack are protected from being
maliciously changed. The scheme is illustrated in Figure
4(c). The difference between the compiler-based approach
shown in Figure 4(b) and the architecture-based approach
is that the latter preserves only a single copy of the return
address stored on the control stack and hence is more space
efficient.

Employing the proposed calling semantics, the run-time
system (in particular, the program loader) needs to allocate
control stack space for a process. The location of the control
stack shall be far away from the data stack. Since buffers
grow to higher address, the optimal control stack location is
below the area for the data stack, so a buffer overflow can
never reach the control stack.

3.3. Discussion

The advantage of the compiler-based approach is that it
does not require changes in the processor, the disadvantage
is the introduced runtime overhead. The architectural ap-
proach does not incur performance overhead and is trans-
parent to application programs, however, it requires chang-
ing the instruction set semantic and adding a new register
into the processor. Next, we discuss several system imple-
mentation issues that are not addressed in our current solu-
tion.

Control Stack Size. The amount of space required by
the control stack depends on the number of nested function

calls in an application. Table 2 shows the maximum func-
tion call depth for SPECINT 2000. Most applications have
very limited call depth (less than 32). A control stack with
one memory page (the granularity of kernel page allocation)
shall suffice for almost all practical applications.

Benchmark Maximum Call Depth

bzip2 11
crafty 28
eon 30
gap 362
gcc 32
gzip 14
mcf 41
parser 62
perlbmk 17
twolf 15
vortex 29

Table 2. Maximum Function Call Depth
Handling Multi-threading and Longjmp. For multi-

threaded applications, each thread needs to have its
own control stack. Thread creation APIs such as
pthread create() can be changed to automatically and trans-
parently allocate the required space for the application pro-
grams. Setjmp and longjmp are used in some applications
for returning directly from multiple levels of nested func-
tions calls. Adding an extra field in the jmp buf structure 3

to save and later restore the control stack pointer solves the
problem.

It should be noted that StackShield [4] implements the
similar idea as our split stack approach. By changing the
assembler, StackShield provides similar support for stack
buffer protection. We distinguish our work with Stack-
Shield in the following respects: (1) our implementation
changes the compiler while StackShield changes the assem-
bler; directly modifying the compiler, the optimizer can
more efficiently optimize the application code (including
the code for the split stack operation); (2) the proposed ar-
chitectural support for implementing the split stack elimi-
nates the overhead of software solution overhead and does
not require access to the source code.

4. Secure Return Address Stack (SRAS)

In this section, we propose the Secure Return Address
Stack (SRAS). In the split stack approach discussed in the
previous section, return addresses are stored in the control
stack in memory to prevent them from being changed. In
contrast to the split stack approach, SRAS does not try to

3The C structure jmp buf is used by setjmp and longjmp to record and
later to restore the current stack/frame pointer.

prevent overwriting a return address stored on the stack, it
instead detects an attack after the return address is mali-
ciously changed but before the attack can have any negative
impact.

The operation of the SRAS approach is similar to Return
Address Stack (RAS) [17] implemented in modern proces-
sors. RAS is usually implemented at the instruction fetch
stage of processor pipeline to maximize effective instruc-
tion fetch bandwidth. RAS can accurately predict the target
address for a return instructions. When a function call in-
struction is fetched, the return address is pushed onto the
RAS. When the return instruction is fetched, the top of the
RAS is popped off and is used as the fetch address for the
next instruction fetch cycle. RAS can usually achieve very
high prediction accuracy (greater than 99%) [17]. Observe
that the RAS contains a redundant hardware copy of the
return address on the process’s stack in memory and is im-
mune from stack overflow. This redundant copy of the re-
turn address can be used to detect situations when the return
address has been tampered with. In normal operations, RAS
mis-predictions are due to speculative update of the stack
and overflows due to limited RAS size. A buffer overflow
attack can also contribute to a RAS mis-prediction because
it changes the correct return address on the stack.

Three alternative RAS extensions are proposed and eval-
uated for detecting buffer overflow attacks: (1) Specula-
tive SRAS that extends the existing RAS and raises ex-
ceptions whenever mismatch/mis-prediction occurs; (2)
Non-speculative SRAS that operates as new RAS at the
commit stage of processor pipeline and eliminates RAS
mis-prediction due to speculative RAS update; (3) Non-
speculative SRAS with overflow handling that handles over-
flow in the Non-speculative SRAS. While hardware com-
plexity and cost increase, the performance overhead is re-
duced going from alternative one to three. This section
presents the three approaches and provides evaluation re-
sults from implementation in the SimpleScalar [5] proces-
sor simulator.

4.1 Speculative and Non-speculative SRAS

The mis-prediction handling mechanism of the existing
Return Address Stack (RAS) can be extended for buffer
overflow attack detection. In the proposed speculative
SRAS approach, any time a RAS mis-prediction occurs, an
exception is raised so that the operating system can han-
dle such a mismatch and determine whether the exception
is due to mis-prediction or buffer overflow. The excep-
tion handler can use a table of all valid return points or
the stack trace of the current process to make this decision.
If a buffer overflow has occurred, the handler will not be
able to trace back to previous stack frame. Such a handler
will incur large overhead since it needs to go through a se-

ries indirect memory references to trace the process stack.
Currently, a penalty of 500 cycles4 is associated with each
mis-prediction exception. The performance overhead of
this scheme is evaluated in the simulator. For RAS size of
64, except for bzip2 and gzip, most of the applications ex-
perienced significant performance degradation, exceeding
100% for some applications. The main reason for the high
overhead is the speculative update of the RAS at the fetch
stage. The higher the RAS prediction rate, the lower the
overhead.

To improve the performance of RAS-based detection, the
speculative nature of the RAS at the fetch stage needs to
be changed. A non-speculative SRAS is implemented in
our simulator at the instruction commit stage, where we
can more accurately establish the function call/return se-
quence without concern about the effect of speculatively ex-
ecuted instruction. Incorrect mismatches (mismatches that
are not due to an attack) in this scheme can occur due to
RAS overflow—such mismatches unnecessarily trigger the
exception code. Simulation results with a SRAS size of 64
entries show that all but gap have no or less than 0.001%
overhead. Benchmark gap still has around 4% overhead be-
cause its maximum call depth is larger than 64.

4.2 Non-speculative SRAS with Overflow Han-
dling

We further improve the SRAS performance based on the
Non-speculative SRAS from the previous subsection. Mis-
matches in the previous schemes are due to SRAS overflow.
A perfect SRAS can be achieved by handling the overflow
situation. Any mismatch with a perfect SRAS is a definitive
signal of a buffer overflow attack.

A perfect SRAS is achieved by eliminating the two
sources of false positives: (1) speculative update due to
branch mis-prediction and (2) overflow due to too many lev-
els of nested function calls. To eliminate pollution of the
SRAS due to speculative update, the SRAS is implemented
in the commit stage of the processor pipeline instead of the
fetch/decode stage — this is our non-speculative version of
the SRAS. To eliminate SRAS overflows, we save part of
its content to an corresponding data structure in memory al-
located for each process. The freed space in SRAS can be
used for deeper levels of nested calls. Subsequently, when
these nested function call return, SRAS might underflow.
At that time, the content from the memory data structure are
reloaded into the SRAS. Saving and reloading of the SRAS
can be implemented either as an operating system excep-
tion handler or as an processor special unit much like the

4Let’s assume the average call depth of a process is 25 levels, which is
a pessimistic value for most programs as can be seen from Table 2. Tracing
of each level requires read of the saved frame pointer for that level. The
memory access latency in our simulator is 18 cycles, thus the overhead is
about 500 cycles (25*18=450)

TLB (Translate Look-aside Buffer) miss handling by MMU
(memory management unit). Finally, to preserve the content
of SRAS across process context switch, its contents needs
to be saved/restored at context switch time.

Performance overhead of SRAS is mainly due to over-
flow and underflow handling. In the current simulation, any
time SRAS overflows, half of its content is transferred to the
in-memory data structure. A fixed number �, of penalty cy-
cles is associated with each return address transfer. Let � be
the size of SRAS, and � be the penalty associated with each
SRAS overflow/underflow. then � � � � ���. In the simula-
tion conducted, the fixed number � is set to be the memory
access latency (the default value in the SimpleScalar sim-
ulator is 18 cycles). This formula of penalty calculation is
pessimistic in associating � cycles of with every transfer of
the ��� return addresses from/to the SRAS. In practice, only
part of them experience the � cycles of latency while the
others can be transferred in the bulk mode. The formula is
optimistic on the other hand in that the overflow/underflow
handling requires some additional processing to locate the
in-memory data structure and to adjust pointers. Taking
these two factors, we believe that the formula above shall
be a reasonable estimate of the overall penalty for an excep-
tion.

Figure 5. Performance Degradation of Non-
speculative SRAS with Overflow Handling

Performance degradation of the SRAS is evaluated for
SPECINT 2000 benchmarks. Figure 5 shows the perfor-
mance (IPC, instructions per cycle) degradation due to the
operation of the SRAS for various SRAS sizes. Most bench-
mark programs exhibit a small amount of runtime overhead
when SRAS size is much smaller than their maximum call
depth. Only gap and parser exhibit overhead when SRAS
is 32 since their maximum call depth is 362 and 62. After
SRAS reaches 64, only gap shows slight overhead (0.02%,
0.005% and 0.0006% for SRAS size of 64, 128 and 256
respectively). Its overhead disappears when SRAS has 512
entries. We believe that a SRAS size of 32 or 64 entries shall

incur minimal performance overhead for most applications.

4.3 Discussion

As with the split stack approach, there are certain system
implementation issues that affect the SRAS. Most notice-
ably, for each context switch, the operating system kernel
needs to save the content of the SRAS to the thread/process
control block and to restore its content when execution is re-
sumed. The overhead due to context switch is not measured
in our current implementation. With some clever tricks, it
is possible not to save or restore the entire stack. For ex-
ample, with a SRAS size of 32, an application might only
use 10 of the entries. It is clear that only the first 10 entries
needs to be save and restored. We can keep improving this
because the application might stays at the depth between 7
and 10 most of the time, in this case, only these four entries
needs to be restored when resuming execution. A second
issue is also with setjmp and longjmp. This can be solved
by a special instruction to rewind the SRAS to an specified
level.

5. Related Work

Since the Morris Internet Worm of 1988 [10], a signif-
icant amount of research effort has been dedicated to pre-
venting and detecting buffer overflow attacks. Proposed so-
lutions can be divided into two broad categories: (1) static
program analysis for buffer overflow avoidance and (2) run-
time buffer overflow detection. Our work falls into the run-
time detection category. It is different from previous solu-
tions in that it is based on architectural support for detection
instead of pure software techniques. We discuss the related
research in this section and compare our work when appro-
priate.

Static Analysis Several commonly used tools, such as
Lint [14], and those proposed in [11] use compile-time anal-
ysis to detect common programming errors. Existing com-
pilers such as gcc have also been augmented to perform
bounds-checking. Wagner et al. [18] used compile-time
range analysis that formulate buffers as a pair of integer,
the allocated size and number of bytes currently in use. The
project specifically focuses on the set of unsafe library func-
tions and checks for each string buffer whether its inferred
allocated size is at least as large as its inferred number of
bytes currently in use. Larochelle et al. [15] proposed to use
special comments (annotations) in program source code as
a heuristic to infer and detect vulnerabilities in C programs.
All these methods produce undesirable false positives and
false negatives and require access to source code.

Compiler Extensions for Runtime Detection. This
class of solutions inserts code for runtime detection at com-
pile time. The instrumentation is done by changing existing

compilers. StackGuard [8] place a canary (a random num-
ber) on the stack at function entry and check it when func-
tion returns to detect overflow. It bases on the assumption
that tampering of the canary implies tampering of return ad-
dress. StackShield [4] modifies the assembler to implement
the similar idea as our split stack approach. We have dis-
cussed the difference between our work and StackShield in
Section 3.3.

Operating System Kernel Patches. By changing part
of the operating system kernel, it is possible to prevent
or detect certain types of buffer overflow attacks. The
Non-executable Stack Linux Patch [16] prevents execution
of malicious code on the stack by making the stack non-
executable. This approach is transparent to application pro-
grams and offers zero performance overhead. However, the
return-into-libc [19] attack completely defeats this scheme
by overwriting the return address and transfers execution
control to the heap or shared libraries.

C Library Patches. Since many buffer overflow vul-
nerabilities are caused by unsafe C library functions such
as gets and strcpy, this class of solutions patch the stan-
dard C library for detections. Libsafe [3] intercepts function
calls to shared C Library and conducts frame-pointer based
boundary checking. These approaches can fail in two cases:
(1) if a program chooses not to enable frame pointer at com-
pile time (many programs do so for performance optimiza-
tion) and (2) if the buffer overflow vulnerability is caused
by application internal function calls.

6 Conclusion
This paper proposes and evaluates two approaches (the

split stack and SRAS) for detecting stack buffer overflow
attacks. The split stack approach separates control and
data stack to prevent the function return address from be-
ing overwritten. It is implemented and evaluated by chang-
ing the GNU C compiler gcc. The compiler implementa-
tion showed slight performance overhead (e.g., 2% for ftp
server). We also showed that the technique can be imple-
mented with architectural supported that incurs no overhead
and does not require source code access. The SRAS ap-
proach uses a redundant copy of return addresses inside the
processor and detects an attack when a return instruction
is being retired. Simulation results show that a maximum
overhead of 0.02% with a SRAS size of 64 entries. Fu-
ture work will address design implications of integrating the
proposed solutions with actual processors. We also plan to
further enhance the proposed techniques to handle a larger
class of attacks, such as heap buffer overflow.

References

[1] Aleph One. Smashing The Stack For Fun And Profit. Phrack
Magazine, 49(7), Nov. 1996.

[2] Avaya Labs Research. Libsafe: Pro-
tecting Critical Elements of Stacks.
http://www.research.avayalabs.com/project/libsafe/,
Feb. 2002.

[3] A. Baratloo, T. Tsai, and N. Singh. Transparent Run-Time
Defense Against Stack Smashing Attacks. In Proceedings.
of the USENIX Annual Technical Conference, June 2000.

[4] Bulba and Kil3r. Bypassing StackGuard and StackShield.
Phrack Magazine, 56(5), May 2000.

[5] D. Burger, T. M. Austin, and S. Bennett. Evaluating Fu-
ture Microprocessor: the SimpleScalar Tool Set. Technical
Report TR-1308, Dept. of Computer Science, University of
Wisconsin-Madison, July 1996.

[6] CERT/CC. CERT Advisories.
http://www.cert.org/advisories/.

[7] CERT/CC. CERT Advisory CA-2001-19 Code Red
Worm Exploiting Buffer Overflow In IIS Indexing Service
DLL. http://www.cert.org/advisories/CA-2001-19.html,
July 2001.

[8] C. Cowan, C. Pu, D. Maier, H. Hinton, P. Bakke, S. Beattie,
A. Grier, P. Wagle, and Q. Zhang. StackGuard: Automatic
Adaptive Detection and Prevention of Buffer-Overflow At-
tacks. In Proceedings of the 7th USENIX Security Confer-
ence, 1998.

[9] eEye Digital Security. UPNP - Multiple Re-
mote Windows XP/ME/98 Vulnerabilities.
http://www.eeye.com/html/Research/Advisories/AD20011220.html,
Dec. 2001.

[10] M. W. Eichin and J. A. Rochlis. With Microscope and
Tweezers: An Analysis of the Internet Virus of November
1988. In Proceedings. of IEEE Computer Society Sympo-
sium on Security and Privacy (SSP ’89), pages 326–343,
1989.

[11] D. Evans. Static Detection of Dynamic Memory Errors.
In Proc. ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, 1996.

[12] Free Software Foundation. The GNU C Compiler.
http://gcc.gnu.org/.

[13] Intel Corporation. Intel Architecture Software Developer’s
Manual, volume 2, Instruction Set Reference, 1999.

[14] S. C. Johnson. Lint, a C Program Checker. Bell Laboratories
Computer Science Technical Report 65, Dec. 1977.

[15] D. Larochelle and D. Evans. Statically detecting likely
buffer overflow vulnerabilities. In Proc. 10th USENIX Se-
curity Symposium, Aug. 2001.

[16] OpenWall Project. Linux Kernel Patch from the Openwall
Project. http://www.openwall.com/linux/.

[17] K. Skadron, P. S. Ahuja, M. Martonosi, and D. W. Clark.
Improving prediction for procedure returns with return-
address-stack repair mechanisms. In International Sympo-
sium on Microarchitecture, pages 259–271, 1998.

[18] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A First
Step Towards Automated Detection of Buffer Overrun Vul-
nerabilities. In Proceedings of 7th Network and Distributed
System Security Symposium, Feb. 2000.

[19] R. Wojtczuk. Defeating Solar Designer Non-executable
Stack Patch. http://www.insecure.org/sploits/non-
executable.stack.problems.html, Jan. 1998.

[20] WU-FTPD Development Group. WU-FTPD.
http://www.wu-ftpd.org/.

